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Abstract

The development of an “exact reverse” adjoint sen-
sitivity analysis solver based on Chimera overlapping
grids, for Euler and turbulent Navier-Stokes physics,
and both multigrid and approximate factorization re-
laxation is presented. The approach results in exact
agreement (to within roundoff) at the end of every iter-
ation between the adjoint sensitivity and the sensitivity
calculated using a direct method of which the adjoint
solver is constructed to be an exact reverse. The ad-
joint sensitivity analysis methods are incorporated into
an optimization system which is shown to reliably opti-
mize a two-dimensional airfoil in viscous, transonic flow
and a two-dimensional high-lift configuration in viscous,
low-Mach conditions.

Introduction

Adjoint analysis methods are being increasingly used
in the fields of optimization (where they can be used to
efficiently calculate the gradient and Hessian of the ob-
jective) and mesh adaptivity (where they can be used to
estimate the nodal contribution to the error in a chosen
objective function). For optimizations involving design
variables that number more than the number of flow-
based objectives and constraints being used, the adjoint
method offers the potential for significant CPU savings
over the direct method. A capability for direct, discrete
sensitivity analysis [11] (that is based on the flow analy-
sis code Overflow) has been extended to perform adjoint
analysis.

However the extension did not occur without requir-
ing some problems to be overcome. Previous work for
CFD codes with block diagonal solvers, such as point
implicit and fourth order Runge Kutta, found that, for
these codes, direct (or sensitivity equation) solvers and
adjoint solvers could be constructed that have the same
asymptotic convergence rates as the flow solver by sim-
ply using the same iterative scheme and, for the ad-
joint solver, merely replacing the direct operations by
their transposes [10, 9]. Identical convergence rates were
found for all such cases. However, when applying this
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approach to the block pentadiagonal approximate fac-
torization solver in Overflow [3, 20, 19], it was found
that convergence rates for the flow solver were equal
to those of the sensitivity solver but not those for the
adjoint solver. Although for subcritical flows, adjoint
convergence rates were approximately equal, dispari-
ties became evident as the freestream Mach number in-
creased. And for some transonic flows, this disparity
became unacceptable, requiring significant intervention
to obtain convergence. Often the convergence rate was
slower than that of the direct and flow solvers, although
the final solution was always correct.

To overcome this problem, it was found necessary to
use an approach that draws from aspects of the strategy
of both the “hand-differentiation” and the “automatic
differentiation” camps. The final discretization is sim-
ilar to that which would be produced by an automatic
differentiation process, but incorporates efficiencies such
as the storage of certain variables, the bypassing of cer-
tain unnecessary calculations and the elimination of the
need to store a “log file”. In addition, the discretization
is restartable. It closely resembles the approach out-
lined in [12, 13] (which was arrived at independently)
but has a simpler, easier to check construction and more
straightforward handling of explicit boundary condi-
tions. In addition, the implementation reported herein
has been extended to flow solvers modelling the Navier-
Stokes equations coupled to a one-equation turbulence
model and flow solvers that use Chimera overlapping
grids and both multigrid and pentadiagonal approxi-
mate factorization relaxation schemes.

Geometry movements were chosen to be simulated
by actually moving the grid rather than using transpi-
rations. This choice was made by comparison of the
relative disadvantages associated with both. For the
target applications of the capability, inaccuracy associ-
ated with the transpiration model seemed to outweigh
the complications associated with grid movement in-
cluding treatment of intersections and noise associated
with moving grids in a Chimera framework. With re-
gard to the latter issue, probably the more serious of the
two, it was felt that, in a similar fashion to the discon-
tinuous response present in shock movement for tran-
sonic optimization, this discontinuous behaviour could
be at a low enough level that it would not seriously
impede the progress of the optimization. This matter
was discussed in [11], in which no adverse effect of the
discontinuous behaviour had then been observed. How-



ever more aggressive movement of overset grids in the
optimization exercises presented here was expected to
provide a challenge to this assumption. As pointed out
in [11], recourse can always be made to design variable
movements which minimize, or even eliminate changing
donor-recipient relationships.

The adjoint implementation is exercised on sample
design optimization problems. For single block Navier-
Stokes optimizations, typical superlinear optimization
convergence behaviour is observed and significant ef-
ficiencies over the direct approach are realized. For
Chimera optimizations, superlinear convergence is also
observed as has been found in previously reported work
using the direct approach with overlapping grids [11].
However noise associated with more significantly chang-
ing donor/recipient relationships does affect the conver-
gence of the optimization exercises here and user inter-
vention is required to obtain this good convergence. Al-
though there are still issues being dealt with, we find a
practical optimization process is certainly emerging.

In the Algorithms section, the components of the op-
timization system are described. In particular, the de-
velopment of the chosen adjoint approach is described.
The adjoint sensitivities are validated by comparison
with values found using the direct method (which in
turn have been validated to machine precision level
by comparison with central difference approximations
for step sizes small enough to reduce truncation error
to infinitesimal magnitude but large enough to avoid
roundoff error). Finally, the sensitivity analysis scheme
is incorporated into an optimization system which is
demonstrated to reliably minimize drag at fixed lift
and at transonic conditions in two Results sections, one
for single-block Navier-Stokes optimizations and one for
Chimera optimizations.

Algorithms

Grid generation and perturbation. Baseline grids
are generated using HYPGEN [4]. However in the
course of a typical optimization, HYPGEN is not used
and recourse is made to a simple grid perturbation tool.
The modal perturbation method [14, 6] was chosen such
that the effect of a design variable, 3;, on the airfoil sur-
face is given by
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where (; is the normalized axial distance from either
the leading or trailing edges. A simple grid perturba-
tion program was written which basically extends these
surface movements, for a given value of the streamwise
computational variable, into the grid such that Az is
constant for a distance from the surface and then de-
cays linearly to zero at some input value of the normal

computational variable. One advantage of this approach
is that the analytic grid sensitivities are available prac-
tically by inspection.

We have chosen to initially investigate a Chimera grid
perturbation approach in which the various grids are al-
lowed to move freely and the interpolation coefficients
are allowed to vary. The disadvantage mentioned above
is that there could be noise in the functional response
to the design variable as a point from one grid moves
from a situation in which it lies in one cell in the donor
grid to one in which it lies in a different cell, result-
ing in a discontinous change in the way its interpola-
tion is performed. Also, a point may suddenly become
“blanked out” at certain locations of the design space.
It is felt, however, if appropriate precautions are taken
in the grid construction and in the design variable defi-
nition, that this discontinuous behaviour should be at a
low enough level that it will not impede the progress of
the optimization. Account was taken of the plethora of
transonic CFD optimizations which were successful in
spite of the discontinuous response present due to shock
capturing. The advantage, of course, is that larger grid
movements and large changes of design variables are
possible without regridding. As discussed later, it has
been found that this did not seriously hamper progress
of Chimera optimization exercises discussed herein al-
though it did prevent convergence without user inter-
vention, a problem currently being worked.

Flow analysis For flow analysis, we use the Over-
flow scheme [3], a node-centered algorithm which can
be labelled as finite difference or finite volume. For
interblock overlap and communication information, we
use the Pegsus [23, 1] scheme. This combination of
tools is in widespread use in the US aerospace indus-
try [16, 21].

Adjoint sensitivity analysis: “Exact reverse” ap-
proach To elaborate on the discussion in the Intro-
duction of adjoint convergence problems, previous work
[10, 9] showed that, if the flow solver has a time inte-
gration scheme of the form,
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and adequate convergence of the iteration (here forward
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will both have the same asymptotic convergence rate
as that of the flow solver. (Here, shorthand for the
Jacobian, J = R /0Q, the flow sensitivity u = dQ/dg,
the residual sensitivity, f = 0R /90, the cost function, I,
the cost function flow sensitivity, @ = 0I/0Q and the
adjoint variable, f, have been introduced.) Identical
convergence rates were found for all such cases. This
did not occur for the first implementation of an adjoint
solver based on Overflow.

As a means for resolving this problem, recourse was
made to the strategy adopted by automatic differenta-
tion codes. In this approach [5], the forward method
is constructed first, resulting in the differentiation of
the entire iterative process. The approach can be ap-
proximately thought of as follows. It is assumed that
the grid perturbation scheme has already been differ-
entiated (which, upon examination of Equation (1), is
not a difficult prospect in some cases), or that the fi-
nite difference method has been used, such that the grid
sensitivities are available. This vector becomes an ad-
ditional input to the automatically differentiated code
(along with the standard inputs for the flow solver).
Thereafter, any quantity which is assigned a value in
the flow analysis iterative process, which will have an
effect on the ultimate cost function, and which is de-
pendent (even indirectly) on the grid — for example the
residual, R(Q,X) — is differentiated. Then, applying
the chain rule, the product of the resulting Jacobian
with the input vector is taken. The result is ultimately
the cost function sensitivity. Hence the scheme (here
applied for three iterations) can be written [5] as
l, = @[ +L7' @ {u' + L7 {u’ + L7 (Ju°
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Here, Ig| 1 = u  u” is the nth iteration estimate of the
contribution to the cost function sensitivity due to the
flow solution derivative. (The exact total cost function
sensitivity

T

Ig = Iglr + Igli = Ig|r + 01/0p

usually has a component that is independent of the
flow derivative.) In the forward mode, the sequence
of operations in (5) is performed by traversing the ex-
pression from the inner set of parenthesis and working
outwards. For example, the operations based on the
homogeneous term (that dependent on the initial solu-
tion) require working from right to left. (Of course, for
this linear problem, the final converged sensitivity solu-
tion should be independent of the initial condition, u®.
Hence for the homogeneous problem, the only solution
dependence — which is transient in nature — is on u°.) In

the reverse or adjoint mode, the sequence of operations
is performed in the opposite direction: from outside the
outer parenthesis and working inwards. For example,
the operations on the homogeneous term require work-
ing from left to right. Hence the expressions “forward”
and “reverse” modes of differentiation. Since the result
of this product is a scalar which is, by construction, in-
dependent of the direction of the operations, and since
the forward traversal of the product, by inspection, re-
sults in the fixed point iteration for the forward method
given by Equation (3), this expression suggests the pos-
sibility of a fixed point iteration for the adjoint variable
which would give precisely the same answer as the for-
ward method. And this would hold for any number of
iterations. This would be a valuable tool for debugging
since traditional adjoint methods have only had the fi-
nal result as a check to see whether the coding has been
done properly. One tool the developer has resort to is
evaluation of terms of the form (v, Avs) = (ATvy,vs),
to check individual sections of the code. Determining
a fixed point iteration for the adjoint based on Equa-
tion (5) allows this idea to be extended to the complete
calculation.

Further inspection of Equation (5) reveals that there
is one contribution proportional to u® and a series of
contributions proportional to f. Expansion of the terms
in Equation (5) for a series of iterations makes the pat-
tern obvious and, using a rearranged version of Equa-
tion (3) for u™, we can rewrite Equation (5) as

I, = (@u")=(@G"’+HY) (6
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If we associate variables with the terms that multiply
u’ and f to give I}|; (these are the adjoint variables
— or the working and adjoint variables, respectively, in
[12]), they produce

If|, = (up, u°) + (£, f) (9)

and comparing with Equations (6)-(8), we must have
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with @ = @ and f* = 0.



Adjoint sensitivity analysis: Explicit boundary
conditions. Explicit boundary conditions are simply
dealt with using this approach. Equation (5) (for two
iterations) becomes

IZ, = (@ B{@+L')B{I+L 'J)u’
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in which B = R/9Q is the Jacobian of the residual for
the boundary condition and fg = OR/06. The latter
can be present for the inviscid Euler equations, for ex-
ample, when a design variable has an influence on the
normal direction locally resulting in forcing terms of the
form fg = ¢ - 01/06. Equation (12) results in the fol-
lowing adjustment to the expressions for the working
variable and adjoint variable given in Equations (10)-

(11)
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along with an additional equation for an adjoint variable
corresponding to the boundary forcing term

i+ i+ (15)
which results in a total estimate of the cost function
sensitivity given by

Y|, = (@, u®) + E 6 + B Es). (16)
Figure 1 shows the evolution of forward and reverse es-
timates of Ig| 1 for the Euler equations with approx-
imate factorization and multigrid relaxation. For all
iterations, agreement is to within thirteen-fourteen sig-
nificant digits in double precision codes. Note that, here
and for adjoint comparisons in subsequent paragraphs,
the direct sensitivities have, in turn, undergone thor-
ough validation by comparison with central difference
estimates (see [11] for preliminary validation work).

Adjoint sensitivity analysis:  Navier-Stokes.
This “exact reverse” approach can be easily extended to
coupled systems of equations such as the Navier-Stokes
equations coupled to a partial differential equation gov-
erning a turbulence model. Equation (12) is rewritten
— for only one iteration — as

I, = (&, [Bs(I+L5'J5)[Bo(I+ L Jo)u’+
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in which subscript 5 represents terms corresponding to
the original five components of the three-dimensional
Navier-Stokes equations while subscript 6 represents
terms corresponding to the turbulence model. Using
the same approach as before, we find new forcing and
homogeneous terms corresponding to the turbulence

model equation and the following adjusted expressions
for those corresponding to the Navier-Stokes equations:
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which results in a total estimate of the cost function
sensitivity given by
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Figure 2 shows the evolution of forward and reverse es-
timates of I7|; for the Navier-Stokes equations (coupled
with the Spalart-Allmaras one-equation model) with ap-
proximate factorization and multigrid relaxation. For
all iterations, agreement is again to within thirteen-
fourteen significant digits in double precision codes.

Adjoint sensitivity analysis: Overset grids.
Multiblock Chimera systems of equations are also rel-
atively straightforward. For the Overflow implementa-
tion applied to a 2-block grid, Equation (5) becomes
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Here the numerical subscript refers to the block number
and it is assumed that, in the flow analysis, the blocks
are traversed in order of increasing block number. The
matrices C; represent interpolation operations in which
interpolation information from all other blocks is trans-
ferred to the recipient nodes in block i. For example,
for a simple combination of two blocks of four nodes
each, the operation performed by C; in two dimensions
is given by
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in which the superscript for an entry in Q refers to the
block in which the node lies. Here the only recipient
node in block 1 is node 2 which receives a weighted
average of all four nodes in block 2. The scalars a, b, ¢, d
are the weights or interpolation coefficients associated



with the four nodes in the donor cell. The vectors c;,
refer to source terms that arise when grid movement is
such that the interpolation coefficients are a function of
the design variables. They are given by (for the simple
2-block two-dimensional example),

(0000 0 0 0 o[ q)
0000 as by c5 dg || QL
00000 0 0 0 Q}
00000 0 0 0 0}
““ 100000 0 0 0 Q?
00000 0 0 0 Q3
00000 0 0 0 Q2
o000 0 0 0 ol @)

(Note that this formulation for the forward Chimera
sensitivity algorithm is a simplification over that re-
ported in [11]. It assumes that the interpolation coeffi-
cient sensitivities are available as input. These will have
been formed by performing chain rule multiplications

65 = £XdXZ +€XTXZ

of the matrices representing interpolation sensitivities
to donor grid and recipient grid, £y« and £ x», respec-
tively with the matrices representing the donor and re-
cipient grid sensitivity Xg and X7, respectively.) Us-
ing the same approach as before, i.e. inspecting (22)
and eliciting terms proportional to uf, f; and the new
forcing terms, c;s corresponding to the Chimera source
term, the expressions for the adjoint variables for the
Chimera-coupled equations are:
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which results in a total estimate of the cost function
sensitivity given by
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Figure 3 shows the evolution of forward and reverse es-
timates of I §| 1 for the Euler equations — discretized on
a two-block grid containing a C-grid and a background
box grid. Time integration is, once again, performed
using approximate factorization and multigrid relax-
ation. For all iterations, agreement is again to within

thirteen-fourteen significant digits in double precision
codes. Figure 4 shows ||@?||L, compared to residuals
from the corresponding direct calculations. Note that
asymptotic convergence rates for approximate factoriza-
tion and multigrid are very close to the direct method
counterparts. (As shown below, G represents the resid-
ual for the discrete adjoint equation.)

Although these various extensions to the original
idea have been introduced in isolation, it is relatively
straightforward to implement them together. This has
been done for the Overflow flow solver. In addition, the
adjoint solver has been extended to three-level multi-
grid relaxation, in which equality to corresponding for-
ward mode sensitivities is observed on a per-iteration
basis to within roundoff. Also matrix and scalar dissipa-
tion central difference schemes, flux-difference splitting
schemes with Roe’s approximate solver, Riemann-/back
pressure- as well as characteristic-based farfield bound-
ary conditions have all been incorporated into the ad-
joint and direct solvers. The differentiation of the flux
routines include all the shock-capturing nonlinear de-
vices including pressure-switching and limiters, fully lin-
earized such that locally exact derivatives are found. No
failed optimization has been traced to non-differentiable
parts of the flux routines to this time.

Adjoint sensitivity analysis: Restartable ‘“ex-
act reverse” approach. Giles [12, 13] independently
arrived at the same fixed point iterative scheme for
the single block Euler scheme without boundary con-
ditions, barring some minor differences due to different
assumed initial conditions for the forward solver. But he
went further in that he extended the scheme to a form
that can be restarted. (The algorithm given by Equa-
tions (10)-(11) is restartable for the same flow solution.
But if the solution changes, and sensitivities are sought
at a slightly different condition, restarting from previ-
ously calculated values of adjoint and working variables
will result in an error. This can easily be seen from the
fact that, from Equation (11) at convergence, one must
have @, = 0. Otherwise, the adjoint variables will be
different from the previous iteration. Therefore, when
a restart is done using the old variables nothing will
change. Everything is driven by 1. Thus the restart
is obviously incorrect. Since i) represents ezactly the
derivative of I3’ with respect to u® and £V represents
ezxactly its derivative with respect to f, when we move
to a new flow solution, Q, we have immediately lost this
exactness because our current f will have been formed
by a series of matrix multiplications found by linearizing
a different flow condition - and with a different forcing
term. Furthermore, since the solution does not change,
we don’t even converge to the right answer.)

Giles presented a restartable form (which converges
to the right answer even if the flow solution is differ-
ent than that for which the initial estimates of the ad-



joint variable were originally calculated) by eliminat-
ing the working variable, @i, entirely from the expres-
sions for the adjoint variables. The resulting scheme
also matches forward values of the functional on a per-
iteration basis. He incorporated inviscid wall boundary
conditions by replacing individual rows of the global sys-
tem for the residuals by ones corresponding to the wall
boundary condition. Because of features of the Overflow
flow solver including the sequential coupling of flow and
turbulence model equations, the sequential coupling of
block/block systems and the variety and complexity of
boundary conditions, some of which involve updating by
extrapolation from the interior followed by averaging of
boundary variables, it was found, after learning about
Giles’ restartable approach, that the “exact reverse” ap-
proach given by Equations (10)-(11) was more easily
and generally applicable to the Overflow code while still
giving per-iteration equality with the forward method.

However to extend the “exact reverse” approach to a
restartable form, and carrying along the more general
treatment of coupled systems and boundary conditions,
it is instructive to follow an approach similar to that
presented in [12, 13]. First the iteration is converted to
a form allowing discrete integration by parts:-

B{I+L 'J}u" + BL 'f; +fp
u” + Xu" + BL7!f; + f5

un+l —
where
X = B{I+L'J}-I

Then, treating the fixed point iteration as a constraint
with associated Lagrange multiplier @, we can augment
the functional as follows.
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in which discrete integration by parts has been used
[12]. Therefore if @, satisfies the differential equation
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with @Y = 1, then the functional is given by
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These can be seen to be nearly identical to Equa-
tions (13)-(15) found using direct analysis of the prod-
uct representing the functional given in Equation (12).
The only difference is that, in the present case, one
marches backwards in time. Following the remainder
of Giles’ development, with these new expressions,

fr— " = LTBTart! (23)
— L—TBT(I—I_’_JTEITL-H + B*ng—i—l)
f-g _ f-g+1 (1—1 + JTf'In+1 + B*Tf'g+l) (24)

in which B*7 = B — I has been introduced. Note
that BTB*T = 0 so, as with Giles’ approach, fp has
no effect on f; and therefore can be calculated in a
post-processing step. Also note that the scheme en-
compasses multiblock Chimera algorithms and one- and
two-equation turbulence model systems if, on a per-
iteration basis, the interior residuals for all blocks and
systems of partial differential equations are calculated
and subsequently all the corresponding boundary con-
ditions are applied.

Adjoint sensitivity analysis: Summary. Sum-
ming up, the restartable form is obviously preferable.
However it has been found to be less amenable to checks
of the form (v, Avy) = (ATv;,v;) in which whole seg-
ments of the code need to be isolated. As a result, the
approach to this point has been firstly to implement
the “exact reverse” approach with its simpler, checkable
construction and secondly, once this version is in hand,
to implement the “restartable exact reverse” version us-
ing data from the “checkable exact reverse” version to
check the final implementation.

Optimization To drive the optimization process, we
have used the Boeing in-house tool named HDNLPR
from the BCSOPT library [2] . We used the options
that form the Hessian using the BFGS method and used
the “make feasible then optimize” algorithm.

Single Block Optimization

Coarse Design Space Discretization. The base-
line test geometry is a NACAOQ012 airfoil. The baseline
grid used was that which comes with the standard Over-
flow distribution [3] and was used to validate Overflow’s
discretization of various turbulence models against ex-
perimental data discussed at the ATAA Viscous Tran-
sonic Airfoil Workshop [15]. The baseline freestream
flow conditions of My, = 0.799, a = 2.26°, Re = 9M
are identical to one condition used in that experiment.
The optimization exercise selected was to minimize Cy
at fixed C; = 0.346. The design variable set contained «,
the freestream angle of attack, and two shape variables
(defined by Equation 1) where p; = 1.3569, (; = 1—z/c,



p2 = 1.9434, (; = z/c were used resulting in two modes
with maxima at z/c = 40% and z/c = 70%, both with
non-zero trailing edge slope. Figure 7 shows the optimal
grid. No non-smoothness is observed indicating that
the grid perturbation system, described above, is work-
ing as planned. Adjoint sensitivities and function values
were calculated using the multigrid algorithms and with
turbulence simulated using the Spalart-Allmaras model
[22] for their respective solvers.

Figures 5-6 shows the evolution of the design vari-
ables and objective function, constraint residuals and
Kuhn-Tucker residual. Note that the aft camber design
variable (x03) has increased while the angle of attack
(x01) has decreased. As can be seen from the plots of
geometry, pressure coefficient and skin friction shown in
Figures 17-19, this has resulted in a highly aft-loaded
supercritical airfoil with many of the characteristics ex-
pected for an optimal airfoil in this type of flow regime
(rapid leading edge expansion, somewhat flat rooftop,
etc.) Also note the superlinear convergence evident in
the Kuhn-Tucker convergence history which is expected
at the end of a quasi-Newton driven optimization with
accurate gradients.

The behaviour is similar to that found for a previously
reported 2D inviscid optimization [11]. (That case used
an equality constraint of C1=0.493 which is significantly
higher than the case here.) For this case, the aft shock
movement is limited to a position at around z/c = 65%.
At this shock location, the region of separated flow is
limited to an area aft of z/c = 96% on the upper surface
as can be seen in Figure 19. The imposition of the pres-
sure distribution found for the optimal inviscid airfoil
onto a turbulent boundary layer would most certainly
cause much more significant trailing edge separation and
result in a far from optimal airfoil.

This is the behaviour expected for viscous optimiza-
tion and is the main driver for performing viscous rather
than inviscid optimization for flow regimes found for
(low-Mach) transonic jet transport wings (which rely
on airfoils, approximately, of the thickness level and for
the flow regimes used here).

Figures 11-12 show a comparison of baseline and op-
timal C), distributions while Figures 14-15 show a cor-
responding Mach comparison. Note that a weak shock
has appeared on the lower surface for the optimal so-
lution. The rather high freestream Mach and the con-
strained thickness distribution (through choice of the
design variables) for this case preclude reduction of the
drag (and near-elimination of wave drag) to levels found
for typical Boeing jet transport airfoils.

Finer Design Space Discretization. With the ad-
joint solver it is straightforward to increase the fidelity
of the optimization to larger numbers of design vari-
ables. Although the cost of the optimization can be

higher, due to the fact that more major iterations (each
involving roughly two adjoint solves and a flow solve)
are required till a sufficiently accurate representation of
the BFGS Hessian is found, the cost per major iter-
ation does not change significantly. For this exercise,
the design space is augmented to include Hicks-Henne
modes with peaks at 10%, 20%, 30%, 50%, 60% and
80% in addition to the 40% and 70% modes and « al-
ready included in the optimization described in the pre-
vious paragraph. Other than that the optimization was
defined exactly as that one. Figure 10 shows the opti-
mal grid. Once again, no non-smoothness is observed,
indicating an acceptable grid perturbation method, at
least for this exercise.

Besides an additional 16 counts of drag improvement,
the optimization proceeded as before with about 25 ma-
jor iterations required till convergence as can be seen in
Figures 8-9. Figures 13 and 16 show the optimal C)
and Mach distributions respectively while Figures 17-
19 show comparisons of surface quantities superposed
on those found in the coarse design space experiment
described above. The improved drag is made possible
by creation of a sharper leading edge allowing a more
rapid expansion, more lift to be carried forward and
the aft upper surface shock strength to be decreased.
Although improvement is somewhat mitigated by the
appearance of a leading edge shock, this shock is weak
and doesn’t extend far into the flowfield. In addition
the shock on the lower surface is weakened. In practi-
cal terms, it should be realized that the geometry now
represents a very point-designed airfoil. However, its
off-design failings could be mitigated by including more
flow conditions in the optimization [7].

Note that this adjoint-based optimization realized a
savings of about a factor of 4.5 over what the cost would
have been had the sensitivities been calculated using the
direct sensitivity solver.

Chimera Optimization

2-DV Optimization The baseline geometry for this
optimization, shown in Figure 20 is the NLR7301, a
two-element landing configuration that can be found
in the standard MSES distribution [6] and was used
for validating the MSES flow solver since experimen-
tal wind tunnel data was available [24]. The geome-
try was created [8] by taking a rather sensitive, high-
thickness, supercritical airfoil and placing a flap in an
appropriate location and orientation such that the flow
physics found are somewhat representative of what a
landing configuration might produce. The wind tunnel
test and MSES simulations had a significant stretch of
laminar run terminated by a laminar separation bub-
ble. For this optimization, fully turbulent conditions
were assumed and simulated with the Spalart-Allmaras



model. The baseline flow conditions (near Cj,,,,) of
My, = 0.4, a = 4°, Re = 1.5M included a significantly
higher freestream Mach than would normally be found
for flight conditions where the flap is deployed in such a
manner. This was done for expediency. The advantage
of higher turnaround time far outweighed the benefit of
having more accurate simulation since the purpose of
the exericise was to test out the optimization system
on a high-lift configuration. This situation will change
when the low-Mach preconditioning parts of the Over-
flow code have been incorporated into the adjoint sys-
tem. Also note that other liberties have been taken
with the flow fidelity. Quite dissipative inputs to Over-
flow have been used. Note that other researchers have
recently performed (albeit differently defined) optimiza-
tions and validation work using this geometry [17, 18].

The grid (optimal grid is shown in Figure 25) contains
four blocks: one C-grid each around the main and flap,
and one inner and outer background box grids to allow
decreased grid resolution as the farfield is approached.
The latter background box grid is not observable from
the view shown in Figure 25. The optimization, once
again, was chosen to minimize Cy at fixed C; = 1.96.
Although this is not the highest priority Navier-Stokes
optimization that the high-lift community would like for
this configuration (they would like C; to be maximized),
this less problem-prone approach was taken as a first
step towards that goal. (Taking this approach avoids
having to perform the final stages of the optimization
in massively separated conditions with, possibly, asso-
ciated flow solver convergence problems.)

The design variable set was chosen to be a and flap
rotation. Adjoint sensitivities and function values were
again calculated using the multigrid algorithms with
turbulence modelled using the Spalart-Allmaras model
for their respective solvers.

As shown in Figure 23, the objective initially de-
creases very slightly for the first two iterations as the
optimizer drives C; to the constraint value in the “fea-
sibility” stage. It takes slightly longer, than for simpler
cases, to reach feasibility due to the nonlinearity associ-
ated with flow features such as the massively separated
region. After the end of the second major iteration, the
optimizer switches to constrained minimization mode.
It quickly drives the objective down from Cy = 0.0997
to Cg = 0.0463 at the end of the Tth major iteration.
At that point the optimizer starts to exhibit non-typical
behaviour, with the predicted step size (given by solu-
tion of the Newton system for the Kuhn-Tucker resid-
ual) having to be repeatedly cut back from. The op-
timization was stopped and cold-restarted in case this
behaviour was due to a poor BFGS estimate for the
Hessian. This proved not to be the problem as, in the
subsequent restart, the same behaviour was observed in
the feasibility stage.

Close examination of the line searches in the second

feasibility stage and at the end of first minimization
stage revealed that the problem was due to the above-
mentioned discontinuous behaviour associated with the
creation of the new composite grid. The region in de-
sign space to which the optimizer is trying to drive the
design, in both cases, contains design variable values
which result in a composite grid with a different blank-
ing pattern for the inner box grid, than in the region
from which the design is marching. The change is un-
fortunately discontinuous and the point to which the
optimizer repeatedly cuts back the step size marks a lo-
cation adjacent to this discontinuity. There one inner
box grid node, close to the flap trailing edge, becomes
unblanked. The resulting, sizably discontinuous change
in Cj, for example, provides an insurmountable chal-
lenge to the models used in the line search algorithm.
The workaround used was to use the flap grid from the
location before the discontinuity is encountered as a
frozen phantom mesh for generating the hole in main
and innerbox grids. The subsequent restart shown be-
ginning at tenth iteration in Figure 23 was successful,
with feasibility and optimization stages proceeding in
the expected fashion. The optimization converged to
within tolerance with a final objective of Cy = 0.0406.

3-DV Optimization This exercise is identical to that
described in the previous paragraph with the excep-
tions that one additional design variable, a main ele-
ment camber mode with peak at z/c = 30%, is included
and that C; = 1.9044 is the lift constraint.

The optimization, depicted in Figures 26-27, proceeds
as before with the exception that the converged objec-
tive of C4 = 0.0316 was an improvement of about 90
counts beyond that found in the previous exercise. This
appears to be mainly due to the complete elimination
of the leading edge separation bubble which is effected
by drooping of the main element leading edge. The
same discontinuous behaviour was observed however at
the end of the optimization precluding the development
of the usual superlinear Newton convergence tail. The
use of a frozen phantom flap mesh proved successful
in allowing ultimately convergence of the cold-restarted
optimization.

Note that the optimization was slowed down by the
appearance of several orphan points in the sixth itera-
tion and one in the ninth through sixteenth iterations
and the resultingly inaccurate sensitivities. (The abil-
ity to accurately calculate sensitivities in the presence
of orphan points is a task that will be accomplished in
the near future.) For the seventeenth through twenty-
first iterations there are no orphans. The full step sug-
gested by the quadratic Newton model is taken until,
at the twenty-first iteration, the step size is cut back
because of the same discontinuous behaviour observed
in the previous (2-DV) optimization exercise, and dis-
cussed above. No orphans appeared after the restart



with phantom flap mesh.

Conclusion

A previously reported direct sensitivity solver based
on the Overflow code has been extended to per-
form adjoint sensitivity analysis. This has been per-
formed for both single block and multi-block overlap-
ping grids, for multigrid and approximate factoriza-
tion relaxation schemes, for Euler, laminar and Spalart-
Allmaras Navier-Stokes physics and for both scalar
pressure-switched, Roe-averaged matrix dissipation and
flux-difference splitting with Roe’s approximate solver.
The sensitivities have been validated by comparison
with direct sensitivities and versus finite difference. The
sensitivity analysis scheme has been incorporated into
an optimization system which has been demonstrated to
reliably minimize drag at fixed lift and at various con-
ditions and for a multielement configuration (although
some work remains to be done for the Chimera imple-
mentation in order to avoid the requirement for user
intervention).
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Figure 11: C), distribution for baseline single block so- Figure 14: M distribution for baseline single block so-
lution. lution.

Figure 12: C, distribution for optimal (3-DV) single Figure 15: M distribution for optimal (3-DV) single
block solution. block solution.

Figure 13: C), distribution for optimal (9-DV) single Figure 16: M distribution for optimal (9-DV) single
block solution. block solution.
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Figure 29: C), distribution for baseline Chimera solu- Figure 32: M distribution for baseline Chimera solu-
tion. tion.

Figure 30: C), distribution for optimal (2-DV) Chimera Figure 33: M distribution for optimal (2-DV) Chimera
solution. solution.

Figure 31: C), distribution for optimal (3-DV) Chimera Figure 34: M distribution for optimal (3-DV) Chimera
solution. solution.
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